.. _model_fitting_1: Model fitting 1: Only SSC ========================= .. code:: ipython3 import warnings warnings.filterwarnings('ignore') import matplotlib.pylab as plt import jetset from jetset.test_data_helper import test_SEDs from jetset.data_loader import ObsData,Data from jetset.plot_sedfit import PlotSED from jetset.test_data_helper import test_SEDs .. code:: ipython3 print(jetset.__version__) .. parsed-literal:: 1.3.0rc7 .. code:: ipython3 test_SEDs .. parsed-literal:: ['/Users/orion/miniforge3/envs/jetset/lib/python3.10/site-packages/jetset/test_data/SEDs_data/SED_3C345.ecsv', '/Users/orion/miniforge3/envs/jetset/lib/python3.10/site-packages/jetset/test_data/SEDs_data/SED_MW_Mrk421_EBL_DEABS.ecsv', '/Users/orion/miniforge3/envs/jetset/lib/python3.10/site-packages/jetset/test_data/SEDs_data/SED_MW_Mrk501_EBL_ABS.ecsv', '/Users/orion/miniforge3/envs/jetset/lib/python3.10/site-packages/jetset/test_data/SEDs_data/SED_MW_Mrk501_EBL_DEABS.ecsv'] Loading data ------------ see the :ref:`data_format` user guide for further information about loading data .. code:: ipython3 print(test_SEDs[1]) data=Data.from_file(test_SEDs[1]) .. parsed-literal:: /Users/orion/miniforge3/envs/jetset/lib/python3.10/site-packages/jetset/test_data/SEDs_data/SED_MW_Mrk421_EBL_DEABS.ecsv .. code:: ipython3 %matplotlib inline sed_data=ObsData(data_table=data) sed_data.group_data(bin_width=0.2) sed_data.add_systematics(0.1,[10.**6,10.**29]) p=sed_data.plot_sed() #p.setlim(y_min=1E-15,x_min=1E7,x_max=1E29) .. parsed-literal:: ================================================================================ *** binning data *** ---> N bins= 89 ---> bin_widht= 0.2 msk [False True False True True True True True False False False True False False False False False False False False False False False False True True True True True True True False False False False False False False True True True True True True True True True True True False False False False False False False False False False False False False False False False False True False True False True False True True False True False True False True True True True True True True True True False] ================================================================================ .. image:: Jet_example_model_fit_files/Jet_example_model_fit_8_1.png .. code:: ipython3 sed_data.save('Mrk_401.pkl') phenomenological model constraining ----------------------------------- see the :ref:`phenom_constr` user guide for further information about phenomenological constraining spectral indices ~~~~~~~~~~~~~~~~ .. code:: ipython3 from jetset.sed_shaper import SEDShape my_shape=SEDShape(sed_data) my_shape.eval_indices(minimizer='lsb',silent=True) p=my_shape.plot_indices() p.setlim(y_min=1E-15,y_max=5E-8) .. parsed-literal:: ================================================================================ *** evaluating spectral indices for data *** ================================================================================ .. image:: Jet_example_model_fit_files/Jet_example_model_fit_13_1.png sed shaper ~~~~~~~~~~ .. code:: ipython3 mm,best_fit=my_shape.sync_fit(check_host_gal_template=False, Ep_start=None, minimizer='lsb', silent=True, fit_range=[10.,21.]) .. parsed-literal:: ================================================================================ *** Log-Polynomial fitting of the synchrotron component *** ---> first blind fit run, fit range: [10.0, 21.0] ---> class: HSP .. raw:: html Table length=4
model namenamevalbestfit valerr +err -start valfit range minfit range maxfrozen
LogCubicb-1.585748e-01-1.585748e-016.470535e-03---1.000000e+00-1.000000e+010.000000e+00False
LogCubicc-1.089513e-02-1.089513e-029.764985e-04---1.000000e+00-1.000000e+011.000000e+01False
LogCubicEp1.673177e+011.673177e+012.478677e-02--1.667298e+010.000000e+003.000000e+01False
LogCubicSp-9.489417e+00-9.489417e+001.853260e-02---1.000000e+01-3.000000e+010.000000e+00False
.. parsed-literal:: ---> sync nu_p=+1.673177e+01 (err=+2.478677e-02) nuFnu_p=-9.489417e+00 (err=+1.853260e-02) curv.=-1.585748e-01 (err=+6.470535e-03) ================================================================================ .. code:: ipython3 my_shape.IC_fit(fit_range=[23.,29.],minimizer='minuit',silent=True) p=my_shape.plot_shape_fit() p.setlim(y_min=1E-15,y_max=5E-8) .. parsed-literal:: ================================================================================ *** Log-Polynomial fitting of the IC component *** ---> fit range: [23.0, 29.0] ---> LogCubic fit ====> simplex ====> migrad ====> simplex ====> migrad ====> simplex ====> migrad .. raw:: html Table length=4
model namenamevalbestfit valerr +err -start valfit range minfit range maxfrozen
LogCubicb-1.971111e-01-1.971111e-012.679732e-02---1.000000e+00-1.000000e+010.000000e+00False
LogCubicc-4.037544e-02-4.037544e-022.119803e-02---1.000000e+00-1.000000e+011.000000e+01False
LogCubicEp2.521789e+012.521789e+011.198160e-01--2.529262e+010.000000e+003.000000e+01False
LogCubicSp-1.012535e+01-1.012535e+012.996508e-02---1.000000e+01-3.000000e+010.000000e+00False
.. parsed-literal:: ---> IC nu_p=+2.521789e+01 (err=+1.198160e-01) nuFnu_p=-1.012535e+01 (err=+2.996508e-02) curv.=-1.971111e-01 (err=+2.679732e-02) ================================================================================ .. image:: Jet_example_model_fit_files/Jet_example_model_fit_16_3.png Model constraining ~~~~~~~~~~~~~~~~~~ In this step we are not fitting the model, we are just obtaining the phenomenological ``pre_fit`` model, that will be fitted in using minuit ore least-square bound, as shown below .. code:: ipython3 from jetset.obs_constrain import ObsConstrain from jetset.model_manager import FitModel sed_obspar=ObsConstrain(beaming=25, B_range=[0.001,0.1], distr_e='lppl', t_var_sec=3*86400, nu_cut_IR=1E12, SEDShape=my_shape) prefit_jet=sed_obspar.constrain_SSC_model(electron_distribution_log_values=False,silent=True) prefit_jet.save_model('prefit_jet.pkl') .. parsed-literal:: ================================================================================ *** constrains parameters from observable *** ===> setting C threads to 12 .. raw:: html Table length=12
model namenamepar typeunitsvalphys. bound. minphys. bound. maxlogfrozen
jet_leptonicRregion_sizecm3.460321e+161.000000e+031.000000e+30FalseFalse
jet_leptonicR_Hregion_positioncm1.000000e+170.000000e+00--FalseTrue
jet_leptonicBmagnetic_fieldgauss5.050000e-020.000000e+00--FalseFalse
jet_leptonicNH_cold_to_rel_ecold_p_to_rel_e_ratio1.000000e+000.000000e+00--FalseTrue
jet_leptonicbeam_objbeaming2.500000e+011.000000e-04--FalseFalse
jet_leptonicz_cosmredshift3.080000e-020.000000e+00--FalseFalse
jet_leptonicgminlow-energy-cut-offlorentz-factor*4.697542e+021.000000e+001.000000e+09FalseFalse
jet_leptonicgmaxhigh-energy-cut-offlorentz-factor*1.373160e+061.000000e+001.000000e+15FalseFalse
jet_leptonicNemitters_density1 / cm36.545152e-010.000000e+00--FalseFalse
jet_leptonicgamma0_log_parabturn-over-energylorentz-factor*3.333017e+041.000000e+001.000000e+09FalseFalse
jet_leptonicsLE_spectral_slope2.183468e+00-1.000000e+011.000000e+01FalseFalse
jet_leptonicrspectral_curvature7.928739e-01-1.500000e+011.500000e+01FalseFalse
.. parsed-literal:: ================================================================================ .. code:: ipython3 prefit_jet.eval() pl=prefit_jet.plot_model(sed_data=sed_data) pl.add_residual_plot(prefit_jet,sed_data) pl.setlim(y_min=1E-15,x_min=1E7,x_max=1E29) .. image:: Jet_example_model_fit_files/Jet_example_model_fit_20_0.png Model fitting procedure ----------------------- .. note:: Please, read the introduction and the caveat :ref:`for the frequentist model fitting `: to understand the frequentist fitting workflow see the :ref:`composite_models` user guide for further information about the implementation of :class:`.FitModel`, in particular for parameter setting Model fitting with LSB ~~~~~~~~~~~~~~~~~~~~~~ .. code:: ipython3 from jetset.minimizer import fit_SED,ModelMinimizer from jetset.model_manager import FitModel from jetset.jet_model import Jet if you want to fit the ``prefit_model`` you can load the saved one (this allows you to save time) ad pass it to the ``FitModel`` class .. code:: ipython3 prefit_jet=Jet.load_model('prefit_jet.pkl') fit_model_lsb=FitModel( jet=prefit_jet, name='SSC-best-fit-lsb',template=None) .. parsed-literal:: ===> setting C threads to 12 OR use the one generated above .. code:: ipython3 fit_model=FitModel( jet=prefit_jet, name='SSC-best-fit-lsb',template=None) .. code:: ipython3 fit_model.show_model_components() .. parsed-literal:: -------------------------------------------------------------------------------- Composite model description -------------------------------------------------------------------------------- name: SSC-best-fit-lsb type: composite_model components models: -model name: jet_leptonic model type: jet -------------------------------------------------------------------------------- There is only one component, whit name ``jet_leptonic``, that refers to the ``prefit_jet`` model component We now set the gamma grid size to 200, ad we set ``composite_expr``, anyhow, since we have only one component this step could be skipped .. code:: ipython3 fit_model.jet_leptonic.set_gamma_grid_size(200) fit_model.composite_expr='jet_leptonic' Freezeing parameters and setting fit_range intervals ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ These methods are alternative and equivalent ways to access a model component for setting parameters state and values a) passing as first argument, of the method, the model component ``name`` b) passing as first argument, of the method, the model component ``object`` c) accessing the model component member of the composite model class .. code:: ipython3 #a fit_model.freeze('jet_leptonic','z_cosm') fit_model.freeze('jet_leptonic','R_H') #b fit_model.freeze(prefit_jet,'R') #c fit_model.jet_leptonic.parameters.R.fit_range=[10**15.5,10**17.5] fit_model.jet_leptonic.parameters.beam_obj.fit_range=[5., 50.] Building the ModelMinimizer object ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ Now we build a ``lsb`` model minimizer and run the fit method .. code:: ipython3 model_minimizer=ModelMinimizer('lsb') **Since the pre-fit model was very close to the data, we degrade the model in order to provide a more robust benchmark to the fitter, but this is not required!!!** .. code:: ipython3 fit_model.jet_leptonic.parameters.N.val=1 fit_model.jet_leptonic.parameters.r.val=1.0 fit_model.jet_leptonic.parameters.beam_obj.val=20 fit_model.eval() .. code:: ipython3 %matplotlib inline fit_model.set_nu_grid(1E6,1E30,200) fit_model.eval() p2=fit_model.plot_model(sed_data=sed_data) p2.setlim(y_min=1E-14,x_min=1E6,x_max=2E28) .. image:: Jet_example_model_fit_files/Jet_example_model_fit_41_0.png .. code:: ipython3 best_fit_res=model_minimizer.fit(fit_model, sed_data, 1E11, 1E29, fitname='SSC-best-fit-minuit', repeat=1) .. parsed-literal:: filtering data in fit range = [1.000000e+11,1.000000e+29] data length 35 ================================================================================ *** start fit process *** ----- .. parsed-literal:: 0it [00:00, ?it/s] .. parsed-literal:: - best chisq=2.72311e+01 ------------------------------------------------------------------------- Fit report Model: SSC-best-fit-minuit .. raw:: html Table length=12
model namenamepar typeunitsvalphys. bound. minphys. bound. maxlogfrozen
jet_leptonicgminlow-energy-cut-offlorentz-factor*6.477165e+021.000000e+001.000000e+09FalseFalse
jet_leptonicgmaxhigh-energy-cut-offlorentz-factor*8.714388e+051.000000e+001.000000e+15FalseFalse
jet_leptonicNemitters_density1 / cm35.375875e-010.000000e+00--FalseFalse
jet_leptonicgamma0_log_parabturn-over-energylorentz-factor*3.085231e+041.000000e+001.000000e+09FalseFalse
jet_leptonicsLE_spectral_slope2.185631e+00-1.000000e+011.000000e+01FalseFalse
jet_leptonicrspectral_curvature5.620899e-01-1.500000e+011.500000e+01FalseFalse
jet_leptonicRregion_sizecm3.460321e+161.000000e+031.000000e+30FalseTrue
jet_leptonicR_Hregion_positioncm1.000000e+170.000000e+00--FalseTrue
jet_leptonicBmagnetic_fieldgauss5.027433e-020.000000e+00--FalseFalse
jet_leptonicNH_cold_to_rel_ecold_p_to_rel_e_ratio1.000000e+000.000000e+00--FalseTrue
jet_leptonicbeam_objbeaming2.247307e+011.000000e-04--FalseFalse
jet_leptonicz_cosmredshift3.080000e-020.000000e+00--FalseTrue
.. parsed-literal:: converged=True calls=573 mesg= .. parsed-literal:: '`ftol` termination condition is satisfied.' .. parsed-literal:: dof=27 chisq=27.231050, chisq/red=1.008557 null hypothesis sig=0.451384 best fit pars .. raw:: html Table length=12
model namenamevalbestfit valerr +err -start valfit range minfit range maxfrozen
jet_leptonicgmin6.477165e+026.477165e+028.763882e+01--4.697542e+021.000000e+001.000000e+09False
jet_leptonicgmax8.714388e+058.714388e+054.647860e+04--1.373160e+061.000000e+001.000000e+15False
jet_leptonicN5.375875e-015.375875e-013.173721e-02--1.000000e+000.000000e+00--False
jet_leptonicgamma0_log_parab3.085231e+043.085231e+041.231389e+04--3.333017e+041.000000e+001.000000e+09False
jet_leptonics2.185631e+002.185631e+007.744080e-02--2.183468e+00-1.000000e+011.000000e+01False
jet_leptonicr5.620899e-015.620899e-019.878160e-02--1.000000e+00-1.500000e+011.500000e+01False
jet_leptonicR3.460321e+16------3.460321e+163.162278e+153.162278e+17True
jet_leptonicR_H1.000000e+17------1.000000e+170.000000e+00--True
jet_leptonicB5.027433e-025.027433e-025.893700e-03--5.050000e-020.000000e+00--False
jet_leptonicNH_cold_to_rel_e1.000000e+00------1.000000e+000.000000e+00--True
jet_leptonicbeam_obj2.247307e+012.247307e+011.523719e+00--2.000000e+015.000000e+005.000000e+01False
jet_leptonicz_cosm3.080000e-02------3.080000e-020.000000e+00--True
.. parsed-literal:: ------------------------------------------------------------------------- ================================================================================ .. code:: ipython3 %matplotlib inline fit_model.set_nu_grid(1E6,1E30,200) fit_model.eval() p2=fit_model.plot_model(sed_data=sed_data) p2.setlim(y_min=1E-14,x_min=1E6,x_max=2E28) .. image:: Jet_example_model_fit_files/Jet_example_model_fit_43_0.png .. code:: ipython3 p=model_minimizer.plot_corr_matrix() .. image:: Jet_example_model_fit_files/Jet_example_model_fit_44_0.png saving fit model, model minimizer ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ We can save all the fit products to be used later. .. code:: ipython3 best_fit_res.save_report('SSC-best-fit-lsb.pkl') model_minimizer.save_model('model_minimizer_lsb.pkl') fit_model.save_model('fit_model_lsb.pkl') Model fitting with Minuit ~~~~~~~~~~~~~~~~~~~~~~~~~ To run the ``minuit`` minimizer we will use the same ``prefit_jet`` model used for ``lsb`` .. code:: ipython3 from jetset.minimizer import fit_SED,ModelMinimizer from jetset.model_manager import FitModel from jetset.jet_model import Jet jet_minuit=Jet.load_model('prefit_jet.pkl') jet_minuit.set_gamma_grid_size(200) fit_model_minuit=FitModel( jet=jet_minuit, name='SSC-best-fit-minuit',template=None) .. parsed-literal:: ===> setting C threads to 12 When using minuit, providing ``fit_range`` to parameters with large physical boundaries, such s ‘R’ or emitters Lorentz factors, is advised. .. code:: ipython3 fit_model_minuit.freeze('jet_leptonic','z_cosm') fit_model_minuit.freeze('jet_leptonic','R_H') fit_model_minuit.freeze('jet_leptonic','R') fit_model_minuit.jet_leptonic.parameters.R.fit_range=[5E15,1E17] fit_model_minuit.jet_leptonic.parameters.gmin.fit_range=[10,1000] fit_model_minuit.jet_leptonic.parameters.gmax.fit_range=[5E5,1E7] fit_model_minuit.jet_leptonic.parameters.gamma0_log_parab.fit_range=[1E3,1E5] fit_model_minuit.jet_leptonic.parameters.beam_obj.fit_range=[5,50] Since the pre-fit model was very close to the data, we degrade the model in order to prove a more robust benchmark to the fitter .. code:: ipython3 fit_model_minuit.jet_leptonic.parameters.N.val=1 fit_model_minuit.jet_leptonic.parameters.r.val=1.0 fit_model_minuit.jet_leptonic.parameters.beam_obj.val=20 fit_model_minuit.eval() .. code:: ipython3 model_minimizer_minuit=ModelMinimizer('minuit') .. code:: ipython3 best_fit_minuit=model_minimizer_minuit.fit(fit_model_minuit, sed_data, 1E11, 1E29, fitname='SSC-best-fit-minuit', max_ev=10000, repeat=2) .. parsed-literal:: filtering data in fit range = [1.000000e+11,1.000000e+29] data length 35 ================================================================================ *** start fit process *** ----- fit run: 0 .. parsed-literal:: 0it [00:00, ?it/s] .. parsed-literal:: ====> simplex ====> migrad - best chisq=2.88559e+01 fit run: 1 - old chisq=2.88559e+01 .. parsed-literal:: 0it [00:00, ?it/s] .. parsed-literal:: ====> simplex ====> migrad - best chisq=2.25297e+01 ------------------------------------------------------------------------- Fit report Model: SSC-best-fit-minuit .. raw:: html Table length=12
model namenamepar typeunitsvalphys. bound. minphys. bound. maxlogfrozen
jet_leptonicgminlow-energy-cut-offlorentz-factor*8.459850e+021.000000e+001.000000e+09FalseFalse
jet_leptonicgmaxhigh-energy-cut-offlorentz-factor*9.786619e+051.000000e+001.000000e+15FalseFalse
jet_leptonicNemitters_density1 / cm34.821025e-010.000000e+00--FalseFalse
jet_leptonicgamma0_log_parabturn-over-energylorentz-factor*7.202800e+041.000000e+001.000000e+09FalseFalse
jet_leptonicsLE_spectral_slope2.329220e+00-1.000000e+011.000000e+01FalseFalse
jet_leptonicrspectral_curvature8.433724e-01-1.500000e+011.500000e+01FalseFalse
jet_leptonicRregion_sizecm3.460321e+161.000000e+031.000000e+30FalseTrue
jet_leptonicR_Hregion_positioncm1.000000e+170.000000e+00--FalseTrue
jet_leptonicBmagnetic_fieldgauss4.079311e-020.000000e+00--FalseFalse
jet_leptonicNH_cold_to_rel_ecold_p_to_rel_e_ratio1.000000e+000.000000e+00--FalseTrue
jet_leptonicbeam_objbeaming2.531609e+011.000000e-04--FalseFalse
jet_leptonicz_cosmredshift3.080000e-020.000000e+00--FalseTrue
.. parsed-literal:: converged=True calls=687 mesg= .. raw:: html
Migrad
FCN = 22.53 Nfcn = 687
EDM = 1.74 (Goal: 0.0002) time = 15.1 sec
INVALID Minimum No Parameters at limit
ABOVE EDM threshold (goal x 10) Below call limit
Covariance Hesse ok Accurate Pos. def. Not forced
Name Value Hesse Error Minos Error- Minos Error+ Limit- Limit+ Fixed
0 par_0 845.984955 0.000010 10 1E+03
1 par_1 978.6619e3 0.0032e3 5E+05 1E+07
2 par_2 482.1025e-3 0.0010e-3 0
3 par_3 72e3 4e3 1E+03 1E+05
4 par_4 2.329220 0.000008 -10 10
5 par_5 843.3724e-3 0.0006e-3 -15 15
6 par_6 40.7931e-3 0.0024e-3 0
7 par_7 25.31609 0.00004 5 50
.. parsed-literal:: dof=27 chisq=22.529679, chisq/red=0.834433 null hypothesis sig=0.710002 best fit pars .. raw:: html Table length=12
model namenamevalbestfit valerr +err -start valfit range minfit range maxfrozen
jet_leptonicgmin8.459850e+028.459850e+021.043024e-05--4.697542e+021.000000e+011.000000e+03False
jet_leptonicgmax9.786619e+059.786619e+053.166646e+00--1.373160e+065.000000e+051.000000e+07False
jet_leptonicN4.821025e-014.821025e-011.049228e-06--1.000000e+000.000000e+00--False
jet_leptonicgamma0_log_parab7.202800e+047.202800e+044.302553e+03--3.333017e+041.000000e+031.000000e+05False
jet_leptonics2.329220e+002.329220e+007.853562e-06--2.183468e+00-1.000000e+011.000000e+01False
jet_leptonicr8.433724e-018.433724e-015.638138e-07--1.000000e+00-1.500000e+011.500000e+01False
jet_leptonicR3.460321e+16------3.460321e+165.000000e+151.000000e+17True
jet_leptonicR_H1.000000e+17------1.000000e+170.000000e+00--True
jet_leptonicB4.079311e-024.079311e-022.411677e-06--5.050000e-020.000000e+00--False
jet_leptonicNH_cold_to_rel_e1.000000e+00------1.000000e+000.000000e+00--True
jet_leptonicbeam_obj2.531609e+012.531609e+014.163996e-05--2.000000e+015.000000e+005.000000e+01False
jet_leptonicz_cosm3.080000e-02------3.080000e-020.000000e+00--True
.. parsed-literal:: ------------------------------------------------------------------------- ================================================================================ note that this plot refers to the latest fit trial, in case, please consider storing the plot within a list in the fit loop .. code:: ipython3 p=model_minimizer_minuit.plot_corr_matrix() .. image:: Jet_example_model_fit_files/Jet_example_model_fit_58_0.png .. code:: ipython3 %matplotlib inline fit_model_minuit.eval() p2=fit_model_minuit.plot_model(sed_data=sed_data) p2.setlim(y_min=1E-14,x_min=1E6,x_max=2E28) .. image:: Jet_example_model_fit_files/Jet_example_model_fit_59_0.png saving fit model, model minimizer ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ .. code:: ipython3 best_fit_minuit.save_report('SSC-best-fit-minuit.pkl') model_minimizer_minuit.save_model('model_minimizer_minuit.pkl') fit_model_minuit.save_model('fit_model_minuit.pkl') You can obtain profile and contours, but this is typically time consuming. In any case, better results can be achieved using the MCMC approach (discussed in next section). For further information regarding minuit please refer to https://iminuit.readthedocs.io .. code:: ipython3 #migrad profile #access the data profile_migrad=model_minimizer_minuit.minimizer.mnprofile('s') #make the plot(no need to run the previous command) profile_plot_migrad=model_minimizer_minuit.minimizer.draw_mnprofile('s') .. code:: ipython2 #migrad contour #access the data contour_migrad=model_minimizer_minuit.minimizer.contour('beam_obj','B') #make the plot(no need to run the previous command) contour_plot_migrad=model_minimizer_minuit.minimizer.draw_contour('beam_obj','B') you can use also minos contour and profile, in this case the computational time is even longer: .. code:: ipython3 profile_migrad=model_minimizer_minuit.minimizer.mnprofile('s') profile_plot_migrad=model_minimizer_minuit.minimizer.draw_mnprofile('s') contour_migrad=model_minimizer_minuit.minimizer.mncontour('r','s') contour_plot_migrad=model_minimizer_minuit.minimizer.draw_mncontour('r','s') MCMC sampling ------------- .. note:: Please, read the introduction and the caveat :ref:`for the Bayesian model fitting ` to understand the MCMC sampler workflow. creating and setting the sampler ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ .. code:: ipython3 from jetset.mcmc import McmcSampler from jetset.minimizer import ModelMinimizer .. code:: ipython3 model_minimizer_minuit = ModelMinimizer.load_model('model_minimizer_minuit.pkl') mcmc=McmcSampler(model_minimizer_minuit) .. parsed-literal:: ===> setting C threads to 12 .. code:: ipython3 labels=['N','B','beam_obj','s','gamma0_log_parab'] model_name='jet_leptonic' use_labels_dict={model_name:labels} mcmc.set_labels(use_labels_dict=use_labels_dict) .. code:: ipython3 mcmc.set_bounds(bound=5.0,bound_rel=True) .. parsed-literal:: par: N best fit value: 0.48210245803309054 mcmc bounds: [0, 2.892614748198543] par: B best fit value: 0.04079310894281457 mcmc bounds: [0, 0.24475865365688743] par: beam_obj best fit value: 25.316091554006853 mcmc bounds: [5, 50] par: s best fit value: 2.329220357129224 mcmc bounds: [-9.316881428516895, 10] par: gamma0_log_parab best fit value: 72028.00420425336 mcmc bounds: [1000.0, 100000.0] .. code:: ipython3 mcmc.run_sampler(nwalkers=20, burnin=50,steps=500,progress='notebook') .. parsed-literal:: ===> setting C threads to 12 mcmc run starting .. parsed-literal:: 0%| | 0/500 [00:00 setting C threads to 12 ===> setting C threads to 12 .. code:: ipython3 ms.model.name .. parsed-literal:: 'SSC-best-fit-minuit' .. code:: ipython3 mpl.rcParams['figure.dpi'] = 80 p=ms.plot_model(sed_data=sed_data,fit_range=[1E11, 2E27],size=100) p.setlim(y_min=1E-14,x_min=1E6,x_max=2E28) .. image:: Jet_example_model_fit_files/Jet_example_model_fit_99_0.png .. code:: ipython3 mpl.rcParams['figure.dpi'] = 80 p=ms.plot_model(sed_data=sed_data,fit_range=[1E11, 2E27],size=100,quantiles=[0.05,0.95]) p.setlim(y_min=1E-14,x_min=1E6,x_max=2E28) .. image:: Jet_example_model_fit_files/Jet_example_model_fit_100_0.png .. code:: ipython3 mpl.rcParams['figure.dpi'] = 80 p=ms.plot_model(sed_data=sed_data,fit_range=[1E11, 2E27],size=100,quantiles=[0.05,0.95],plot_mcmc_best_fit_model=True) p.setlim(y_min=1E-14,x_min=1E6,x_max=2E28) .. image:: Jet_example_model_fit_files/Jet_example_model_fit_101_0.png .. code:: ipython3 mpl.rcParams['figure.dpi'] = 80 f=ms.corner_plot(quantiles=(0.16, 0.5, 0.84),title_kwargs=dict(fontsize=12),title_fmt=".2E",use_math_text=True) .. image:: Jet_example_model_fit_files/Jet_example_model_fit_102_0.png .. code:: ipython3 mpl.rcParams['figure.dpi'] = 80 f=ms.plot_par('beam_obj',log_plot=False,figsize=(8,6)) .. image:: Jet_example_model_fit_files/Jet_example_model_fit_103_0.png .. code:: ipython3 f=ms.plot_par('B',log_plot=True,figsize=(8,6)) .. image:: Jet_example_model_fit_files/Jet_example_model_fit_104_0.png .. code:: ipython3 mpl.rcParams['figure.dpi'] = 80 f=ms.plot_chain(p='s',log_plot=False) plt.tight_layout() .. image:: Jet_example_model_fit_files/Jet_example_model_fit_105_0.png .. code:: ipython3 f=ms.plot_chain(log_plot=False) plt.tight_layout() mpl.rcParams['figure.dpi'] = 80 .. image:: Jet_example_model_fit_files/Jet_example_model_fit_106_0.png