.. _model_fitting_3:
Model fitting 4: Only Synchrotron
=================================
.. code:: ipython3
import warnings
warnings.filterwarnings('ignore')
import matplotlib.pylab as plt
import jetset
from jetset.test_data_helper import test_SEDs
from jetset.data_loader import ObsData,Data
from jetset.plot_sedfit import PlotSED
from jetset.test_data_helper import test_SEDs
.. code:: ipython3
print(jetset.__version__)
.. parsed-literal::
1.3.0rc7
.. code:: ipython3
test_SEDs
.. parsed-literal::
['/Users/orion/miniforge3/envs/jetset/lib/python3.10/site-packages/jetset/test_data/SEDs_data/SED_3C345.ecsv',
'/Users/orion/miniforge3/envs/jetset/lib/python3.10/site-packages/jetset/test_data/SEDs_data/SED_MW_Mrk421_EBL_DEABS.ecsv',
'/Users/orion/miniforge3/envs/jetset/lib/python3.10/site-packages/jetset/test_data/SEDs_data/SED_MW_Mrk501_EBL_ABS.ecsv',
'/Users/orion/miniforge3/envs/jetset/lib/python3.10/site-packages/jetset/test_data/SEDs_data/SED_MW_Mrk501_EBL_DEABS.ecsv']
Loading data
------------
see the :ref:`data_format` user guide for further information about loading data
.. code:: ipython3
print(test_SEDs[1])
data=Data.from_file(test_SEDs[1])
.. parsed-literal::
/Users/orion/miniforge3/envs/jetset/lib/python3.10/site-packages/jetset/test_data/SEDs_data/SED_MW_Mrk421_EBL_DEABS.ecsv
.. code:: ipython3
%matplotlib inline
sed_data=ObsData(data_table=data)
sed_data.group_data(bin_width=0.2)
sed_data.add_systematics(0.1,[10.**6,10.**29])
p=sed_data.plot_sed()
.. parsed-literal::
================================================================================
*** binning data ***
---> N bins= 89
---> bin_widht= 0.2
msk [False True False True True True True True False False False True
False False False False False False False False False False False False
True True True True True True True False False False False False
False False True True True True True True True True True True
True False False False False False False False False False False False
False False False False False False True False True False True False
True True False True False True False True True True True True
True True True True False]
================================================================================
.. image:: Jet_example_only_synchrotron_files/Jet_example_only_synchrotron_8_1.png
.. code:: ipython3
sed_data.save('Mrk_401.pkl')
Phenomenological model constraining
-----------------------------------
see the :ref:`phenom_constr` user guide for further information about loading data
Spectral indices
~~~~~~~~~~~~~~~~
.. code:: ipython3
from jetset.sed_shaper import SEDShape
my_shape=SEDShape(sed_data)
my_shape.eval_indices(silent=True)
p=my_shape.plot_indices()
p.setlim(y_min=1E-15,y_max=1E-6)
.. parsed-literal::
================================================================================
*** evaluating spectral indices for data ***
================================================================================
.. image:: Jet_example_only_synchrotron_files/Jet_example_only_synchrotron_13_1.png
Sed shaper
~~~~~~~~~~
.. code:: ipython3
mm,best_fit=my_shape.sync_fit(check_host_gal_template=False,
Ep_start=None,
minimizer='lsb',
silent=True,
fit_range=[10., 21.])
.. parsed-literal::
================================================================================
*** Log-Polynomial fitting of the synchrotron component ***
---> first blind fit run, fit range: [10.0, 21.0]
---> class: HSP
.. raw:: html
Table length=4
model name | name | val | bestfit val | err + | err - | start val | fit range min | fit range max | frozen |
LogCubic | b | -1.585748e-01 | -1.585748e-01 | 6.470535e-03 | -- | -1.000000e+00 | -1.000000e+01 | 0.000000e+00 | False |
LogCubic | c | -1.089513e-02 | -1.089513e-02 | 9.764985e-04 | -- | -1.000000e+00 | -1.000000e+01 | 1.000000e+01 | False |
LogCubic | Ep | 1.673177e+01 | 1.673177e+01 | 2.478677e-02 | -- | 1.667298e+01 | 0.000000e+00 | 3.000000e+01 | False |
LogCubic | Sp | -9.489417e+00 | -9.489417e+00 | 1.853260e-02 | -- | -1.000000e+01 | -3.000000e+01 | 0.000000e+00 | False |
.. parsed-literal::
---> sync nu_p=+1.673177e+01 (err=+2.478677e-02) nuFnu_p=-9.489417e+00 (err=+1.853260e-02) curv.=-1.585748e-01 (err=+6.470535e-03)
================================================================================
.. code:: ipython3
my_shape.IC_fit(fit_range=[23., 29.],minimizer='minuit',silent=True)
p=my_shape.plot_shape_fit()
p.setlim(y_min=1E-15)
.. parsed-literal::
================================================================================
*** Log-Polynomial fitting of the IC component ***
---> fit range: [23.0, 29.0]
---> LogCubic fit
====> simplex
====> migrad
====> simplex
====> migrad
====> simplex
====> migrad
.. raw:: html
Table length=4
model name | name | val | bestfit val | err + | err - | start val | fit range min | fit range max | frozen |
LogCubic | b | -1.971111e-01 | -1.971111e-01 | 2.679732e-02 | -- | -1.000000e+00 | -1.000000e+01 | 0.000000e+00 | False |
LogCubic | c | -4.037544e-02 | -4.037544e-02 | 2.119803e-02 | -- | -1.000000e+00 | -1.000000e+01 | 1.000000e+01 | False |
LogCubic | Ep | 2.521789e+01 | 2.521789e+01 | 1.198160e-01 | -- | 2.529262e+01 | 0.000000e+00 | 3.000000e+01 | False |
LogCubic | Sp | -1.012535e+01 | -1.012535e+01 | 2.996508e-02 | -- | -1.000000e+01 | -3.000000e+01 | 0.000000e+00 | False |
.. parsed-literal::
---> IC nu_p=+2.521789e+01 (err=+1.198160e-01) nuFnu_p=-1.012535e+01 (err=+2.996508e-02) curv.=-1.971111e-01 (err=+2.679732e-02)
================================================================================
.. image:: Jet_example_only_synchrotron_files/Jet_example_only_synchrotron_16_3.png
Model constraining
~~~~~~~~~~~~~~~~~~
.. code:: ipython3
from jetset.obs_constrain import ObsConstrain
from jetset.model_manager import FitModel
from jetset.minimizer import fit_SED
sed_obspar=ObsConstrain(beaming=25,
B_range=[0.001,0.1],
distr_e='lppl',
t_var_sec=3*86400,
nu_cut_IR=1E12,
SEDShape=my_shape)
prefit_jet=sed_obspar.constrain_SSC_model(electron_distribution_log_values=False,silent=True)
prefit_jet.save_model('prefit_jet.pkl')
.. parsed-literal::
================================================================================
*** constrains parameters from observable ***
===> setting C threads to 12
.. raw:: html
Table length=12
model name | name | par type | units | val | phys. bound. min | phys. bound. max | log | frozen |
jet_leptonic | R | region_size | cm | 3.460321e+16 | 1.000000e+03 | 1.000000e+30 | False | False |
jet_leptonic | R_H | region_position | cm | 1.000000e+17 | 0.000000e+00 | -- | False | True |
jet_leptonic | B | magnetic_field | gauss | 5.050000e-02 | 0.000000e+00 | -- | False | False |
jet_leptonic | NH_cold_to_rel_e | cold_p_to_rel_e_ratio | | 1.000000e+00 | 0.000000e+00 | -- | False | True |
jet_leptonic | beam_obj | beaming | | 2.500000e+01 | 1.000000e-04 | -- | False | False |
jet_leptonic | z_cosm | redshift | | 3.080000e-02 | 0.000000e+00 | -- | False | False |
jet_leptonic | gmin | low-energy-cut-off | lorentz-factor* | 4.697542e+02 | 1.000000e+00 | 1.000000e+09 | False | False |
jet_leptonic | gmax | high-energy-cut-off | lorentz-factor* | 1.373160e+06 | 1.000000e+00 | 1.000000e+15 | False | False |
jet_leptonic | N | emitters_density | 1 / cm3 | 6.545152e-01 | 0.000000e+00 | -- | False | False |
jet_leptonic | gamma0_log_parab | turn-over-energy | lorentz-factor* | 3.333017e+04 | 1.000000e+00 | 1.000000e+09 | False | False |
jet_leptonic | s | LE_spectral_slope | | 2.183468e+00 | -1.000000e+01 | 1.000000e+01 | False | False |
jet_leptonic | r | spectral_curvature | | 7.928739e-01 | -1.500000e+01 | 1.500000e+01 | False | False |
.. parsed-literal::
================================================================================
.. code:: ipython3
pl=prefit_jet.plot_model(sed_data=sed_data)
pl.add_residual_plot(prefit_jet,sed_data)
pl.setlim(y_min=1E-15,x_min=1E7,x_max=1E29)
.. image:: Jet_example_only_synchrotron_files/Jet_example_only_synchrotron_19_0.png
Model fitting only Synchorotron component
-----------------------------------------
.. note::
Please, read the introduction and the caveat :ref:`for the frequentist model fitting ` to understand the frequentist fitting workflow
see the :ref:`composite_models` user guide for further information about the implementation of :class:`.FitModel`, in particular for parameter setting
Model fitting with Minuit
~~~~~~~~~~~~~~~~~~~~~~~~~
.. code:: ipython3
from jetset.jet_model import Jet
jet_minuit=Jet.load_model('prefit_jet.pkl')
jet_minuit.set_gamma_grid_size(200)
.. parsed-literal::
===> setting C threads to 12
we switch off the IC component
.. code:: ipython3
jet_minuit.spectral_components.SSC.state='off'
jet_minuit.show_model()
.. parsed-literal::
--------------------------------------------------------------------------------
model description:
--------------------------------------------------------------------------------
type: Jet
name: jet_leptonic
geometry: spherical
electrons distribution:
type: lppl
gamma energy grid size: 201
gmin grid : 4.697542e+02
gmax grid : 1.373160e+06
normalization: True
log-values: False
ratio of cold protons to relativistic electrons: 1.000000e+00
radiative fields:
seed photons grid size: 100
IC emission grid size: 100
source emissivity lower bound : 1.000000e-120
spectral components:
name:Sum, state: on
name:Sum, hidden: False
name:Sync, state: self-abs
name:Sync, hidden: False
name:SSC, state: off
name:SSC, hidden: False
external fields transformation method: blob
SED info:
nu grid size jetkernel: 1000
nu size: 500
nu mix (Hz): 1.000000e+06
nu max (Hz): 1.000000e+30
flux plot lower bound : 1.000000e-30
--------------------------------------------------------------------------------
.. raw:: html
Table length=12
model name | name | par type | units | val | phys. bound. min | phys. bound. max | log | frozen |
jet_leptonic | gmin | low-energy-cut-off | lorentz-factor* | 4.697542e+02 | 1.000000e+00 | 1.000000e+09 | False | False |
jet_leptonic | gmax | high-energy-cut-off | lorentz-factor* | 1.373160e+06 | 1.000000e+00 | 1.000000e+15 | False | False |
jet_leptonic | N | emitters_density | 1 / cm3 | 6.545152e-01 | 0.000000e+00 | -- | False | False |
jet_leptonic | gamma0_log_parab | turn-over-energy | lorentz-factor* | 3.333017e+04 | 1.000000e+00 | 1.000000e+09 | False | False |
jet_leptonic | s | LE_spectral_slope | | 2.183468e+00 | -1.000000e+01 | 1.000000e+01 | False | False |
jet_leptonic | r | spectral_curvature | | 7.928739e-01 | -1.500000e+01 | 1.500000e+01 | False | False |
jet_leptonic | R | region_size | cm | 3.460321e+16 | 1.000000e+03 | 1.000000e+30 | False | False |
jet_leptonic | R_H | region_position | cm | 1.000000e+17 | 0.000000e+00 | -- | False | True |
jet_leptonic | B | magnetic_field | gauss | 5.050000e-02 | 0.000000e+00 | -- | False | False |
jet_leptonic | NH_cold_to_rel_e | cold_p_to_rel_e_ratio | | 1.000000e+00 | 0.000000e+00 | -- | False | True |
jet_leptonic | beam_obj | beaming | | 2.500000e+01 | 1.000000e-04 | -- | False | False |
jet_leptonic | z_cosm | redshift | | 3.080000e-02 | 0.000000e+00 | -- | False | False |
.. parsed-literal::
--------------------------------------------------------------------------------
.. code:: ipython3
fit_model_minuit=FitModel( jet=jet_minuit, name='Only-Synch-best-fit-minuit')
fit_model_minuit.freeze('jet_leptonic','z_cosm')
fit_model_minuit.freeze('jet_leptonic','R_H')
fit_model_minuit.freeze('jet_leptonic','R')
fit_model_minuit.freeze('jet_leptonic','gmax')
fit_model_minuit.jet_leptonic.parameters.R.fit_range=[10**15.5, 10**17.5]
fit_model_minuit.jet_leptonic.parameters.beam_obj.fit_range=[5., 50.]
.. code:: ipython3
from jetset.minimizer import fit_SED,ModelMinimizer
model_minimizer_minuit=ModelMinimizer('minuit')
best_fit_minuit=model_minimizer_minuit.fit(fit_model_minuit,sed_data,10.0**15,10**20.0,fitname='SSC-best-fit-minuit',repeat=3)
.. parsed-literal::
filtering data in fit range = [1.000000e+15,1.000000e+20]
data length 13
================================================================================
*** start fit process ***
-----
fit run: 0
.. parsed-literal::
0it [00:00, ?it/s]
.. parsed-literal::
====> simplex
====> migrad
- best chisq=1.66861e+00
fit run: 1
- old chisq=1.66861e+00
.. parsed-literal::
0it [00:00, ?it/s]
.. parsed-literal::
====> simplex
====> migrad
- best chisq=1.66861e+00
fit run: 2
- old chisq=1.66861e+00
.. parsed-literal::
0it [00:00, ?it/s]
.. parsed-literal::
====> simplex
====> migrad
- best chisq=1.66860e+00
-------------------------------------------------------------------------
Fit report
Model: SSC-best-fit-minuit
.. raw:: html
Table length=12
model name | name | par type | units | val | phys. bound. min | phys. bound. max | log | frozen |
jet_leptonic | gmin | low-energy-cut-off | lorentz-factor* | 4.226997e+02 | 1.000000e+00 | 1.000000e+09 | False | False |
jet_leptonic | gmax | high-energy-cut-off | lorentz-factor* | 1.373160e+06 | 1.000000e+00 | 1.000000e+15 | False | True |
jet_leptonic | N | emitters_density | 1 / cm3 | 1.083644e+00 | 0.000000e+00 | -- | False | False |
jet_leptonic | gamma0_log_parab | turn-over-energy | lorentz-factor* | 4.047533e+04 | 1.000000e+00 | 1.000000e+09 | False | False |
jet_leptonic | s | LE_spectral_slope | | 2.121360e+00 | -1.000000e+01 | 1.000000e+01 | False | False |
jet_leptonic | r | spectral_curvature | | 6.256219e-01 | -1.500000e+01 | 1.500000e+01 | False | False |
jet_leptonic | R | region_size | cm | 3.460321e+16 | 1.000000e+03 | 1.000000e+30 | False | True |
jet_leptonic | R_H | region_position | cm | 1.000000e+17 | 0.000000e+00 | -- | False | True |
jet_leptonic | B | magnetic_field | gauss | 1.422387e-02 | 0.000000e+00 | -- | False | False |
jet_leptonic | NH_cold_to_rel_e | cold_p_to_rel_e_ratio | | 1.000000e+00 | 0.000000e+00 | -- | False | True |
jet_leptonic | beam_obj | beaming | | 3.627168e+01 | 1.000000e-04 | -- | False | False |
jet_leptonic | z_cosm | redshift | | 3.080000e-02 | 0.000000e+00 | -- | False | True |
.. parsed-literal::
converged=True
calls=165
mesg=
.. raw:: html
Migrad |
FCN = 1.669 |
Nfcn = 165 |
EDM = 3.3e-05 (Goal: 0.0002) |
time = 2.0 sec |
Valid Minimum |
No Parameters at limit |
Below EDM threshold (goal x 10) |
Below call limit |
Covariance |
Hesse ok |
APPROXIMATE |
NOT pos. def. |
FORCED |
|
Name |
Value |
Hesse Error |
Minos Error- |
Minos Error+ |
Limit- |
Limit+ |
Fixed |
0 |
par_0 |
0.42e3 |
0.11e3 |
|
|
1 |
1E+09 |
|
1 |
par_1 |
1.08 |
0.30 |
|
|
0 |
|
|
2 |
par_2 |
40e3 |
7e3 |
|
|
1 |
1E+09 |
|
3 |
par_3 |
2.12 |
0.05 |
|
|
-10 |
10 |
|
4 |
par_4 |
0.63 |
0.07 |
|
|
-15 |
15 |
|
5 |
par_5 |
0.0142 |
0.0014 |
|
|
0 |
|
|
6 |
par_6 |
36.3 |
2.4 |
|
|
5 |
50 |
|
.. parsed-literal::
dof=6
chisq=1.668605, chisq/red=0.278101 null hypothesis sig=0.947519
best fit pars
.. raw:: html
Table length=12
model name | name | val | bestfit val | err + | err - | start val | fit range min | fit range max | frozen |
jet_leptonic | gmin | 4.226997e+02 | 4.226997e+02 | 1.139513e+02 | -- | 4.697542e+02 | 1.000000e+00 | 1.000000e+09 | False |
jet_leptonic | gmax | 1.373160e+06 | -- | -- | -- | 1.373160e+06 | 1.000000e+00 | 1.000000e+15 | True |
jet_leptonic | N | 1.083644e+00 | 1.083644e+00 | 3.031713e-01 | -- | 6.545152e-01 | 0.000000e+00 | -- | False |
jet_leptonic | gamma0_log_parab | 4.047533e+04 | 4.047533e+04 | 6.973433e+03 | -- | 3.333017e+04 | 1.000000e+00 | 1.000000e+09 | False |
jet_leptonic | s | 2.121360e+00 | 2.121360e+00 | 4.939483e-02 | -- | 2.183468e+00 | -1.000000e+01 | 1.000000e+01 | False |
jet_leptonic | r | 6.256219e-01 | 6.256219e-01 | 6.567015e-02 | -- | 7.928739e-01 | -1.500000e+01 | 1.500000e+01 | False |
jet_leptonic | R | 3.460321e+16 | -- | -- | -- | 3.460321e+16 | 3.162278e+15 | 3.162278e+17 | True |
jet_leptonic | R_H | 1.000000e+17 | -- | -- | -- | 1.000000e+17 | 0.000000e+00 | -- | True |
jet_leptonic | B | 1.422387e-02 | 1.422387e-02 | 1.433089e-03 | -- | 5.050000e-02 | 0.000000e+00 | -- | False |
jet_leptonic | NH_cold_to_rel_e | 1.000000e+00 | -- | -- | -- | 1.000000e+00 | 0.000000e+00 | -- | True |
jet_leptonic | beam_obj | 3.627168e+01 | 3.627168e+01 | 2.427675e+00 | -- | 2.500000e+01 | 5.000000e+00 | 5.000000e+01 | False |
jet_leptonic | z_cosm | 3.080000e-02 | -- | -- | -- | 3.080000e-02 | 0.000000e+00 | -- | True |
.. parsed-literal::
-------------------------------------------------------------------------
================================================================================
.. code:: ipython3
%matplotlib inline
fit_model_minuit.set_nu_grid(1E6,1E30,200)
fit_model_minuit.eval()
p2=fit_model_minuit.plot_model(sed_data=sed_data)
p2.setlim(y_min=1E-11,x_min=1E15,y_max=1E-9,x_max=3E19)
.. image:: Jet_example_only_synchrotron_files/Jet_example_only_synchrotron_28_0.png
.. code:: ipython3
try:
c=model_minimizer_minuit.minimizer.draw_contour('r','s')
except:
pass
.. code:: ipython3
m=model_minimizer_minuit.minimizer.draw_profile('r')
.. image:: Jet_example_only_synchrotron_files/Jet_example_only_synchrotron_30_0.png
.. code:: ipython3
best_fit_minuit.save_report('SSC-best-fit-minuit.pkl')
model_minimizer_minuit.save_model('model_minimizer_minuit.pkl')
fit_model_minuit.save_model('fit_model_minuit.pkl')
MCMC sampling
-------------
.. note::
Please, read the introduction and the caveat :ref:`for the Bayesian model fitting ` to understand the MCMC sampler workflow.
.. code:: ipython3
from jetset.mcmc import McmcSampler
from jetset.minimizer import ModelMinimizer
.. code:: ipython3
model_minimizer_minuit = ModelMinimizer.load_model('model_minimizer_minuit.pkl')
mcmc=McmcSampler(model_minimizer_minuit)
.. parsed-literal::
===> setting C threads to 12
.. code:: ipython3
labels=['N','B','beam_obj','s','gamma0_log_parab']
model_name='jet_leptonic'
use_labels_dict={model_name:labels}
mcmc.set_labels(use_labels_dict=use_labels_dict)
.. code:: ipython3
mcmc.set_bounds(bound=5.0,bound_rel=True)
.. parsed-literal::
par: N best fit value: 1.08364419186145 mcmc bounds: [0, 6.501865151168699]
par: B best fit value: 0.014223870997614777 mcmc bounds: [0, 0.08534322598568866]
par: beam_obj best fit value: 36.271677271204155 mcmc bounds: [5.0, 50.0]
par: s best fit value: 2.1213601289476283 mcmc bounds: [-8.485440515790513, 10]
par: gamma0_log_parab best fit value: 40475.33090501091 mcmc bounds: [1, 242851.98543006548]
.. code:: ipython3
mcmc.run_sampler(nwalkers=20, burnin=50,steps=500,progress='notebook')
.. parsed-literal::
===> setting C threads to 12
mcmc run starting
.. parsed-literal::
0%| | 0/500 [00:00, ?it/s]
.. parsed-literal::
mcmc run done, with 1 threads took 227.12 seconds
.. code:: ipython3
print(mcmc.acceptance_fraction)
.. parsed-literal::
0.3519
.. code:: ipython3
p=mcmc.plot_model(sed_data=sed_data,fit_range=[1E15, 1E20],size=100)
p.setlim(y_min=1E-14,x_min=1E6,x_max=2E20)
.. image:: Jet_example_only_synchrotron_files/Jet_example_only_synchrotron_40_0.png
.. code:: ipython3
p=mcmc.plot_model(sed_data=sed_data,fit_range=[1E15, 1E20],size=100,quantiles=[0.05,0.95])
p.setlim(y_min=1E-14,x_min=1E6,x_max=2E20)
.. image:: Jet_example_only_synchrotron_files/Jet_example_only_synchrotron_41_0.png
.. code:: ipython3
mcmc.labels
.. parsed-literal::
['N', 'B', 'beam_obj', 's', 'gamma0_log_parab']
To have a better rendering on the scatter plot, we redefine the plot
labels
.. code:: ipython3
mcmc.set_plot_label('N',r'$N$')
mcmc.set_plot_label('B',r'$B$')
mcmc.set_plot_label('beam_obj',r'$\delta$')
mcmc.set_plot_label('s',r'$s$')
mcmc.set_plot_label('gamma0_log_parab',r'$\gamma_0$')
the code below lets you tuning the output
1) mpl.rcParams[‘figure.dpi’] if you increase it you get a better
definition
2) title_fmt=“.2E” this is the format for python, 2 significant digits,
scientific notation
3) title_kwargs=dict(fontsize=12) you can change the
fontsizef=mcmc.plot_chain(‘s’,log_plot=False)
.. code:: ipython3
import matplotlib as mpl
mpl.rcParams['figure.dpi'] = 80
f=mcmc.corner_plot(quantiles=(0.16, 0.5, 0.84),title_kwargs=dict(fontsize=12),title_fmt=".2E",use_math_text=True)
.. image:: Jet_example_only_synchrotron_files/Jet_example_only_synchrotron_46_0.png
.. code:: ipython3
mcmc.get_par('N')
.. parsed-literal::
(array([1.21353916, 1.15178803, 1.0995533 , ..., 1.9475931 , 0.59723078,
1.90069347]),
0)
.. code:: ipython3
f=mcmc.plot_par('beam_obj')
.. image:: Jet_example_only_synchrotron_files/Jet_example_only_synchrotron_48_0.png
.. code:: ipython3
f=mcmc.plot_par('gamma0_log_parab',log_plot=True)
.. image:: Jet_example_only_synchrotron_files/Jet_example_only_synchrotron_49_0.png
Save and reuse MCMC
-------------------
.. code:: ipython3
mcmc.save('mcmc_sampler.pkl')
.. code:: ipython3
from jetset.mcmc import McmcSampler
from jetset.data_loader import ObsData
from jetset.plot_sedfit import PlotSED
from jetset.test_data_helper import test_SEDs
sed_data=ObsData.load('Mrk_401.pkl')
ms=McmcSampler.load('mcmc_sampler.pkl')
.. parsed-literal::
===> setting C threads to 12
===> setting C threads to 12
.. code:: ipython3
ms.model.name
.. parsed-literal::
'Only-Synch-best-fit-minuit'
.. code:: ipython3
p=ms.plot_model(sed_data=sed_data,fit_range=[1E15, 1E20],size=50)
p.setlim(y_min=1E-14,x_min=1E6,x_max=2E20)
.. image:: Jet_example_only_synchrotron_files/Jet_example_only_synchrotron_54_0.png
.. code:: ipython3
p=ms.plot_model(sed_data=sed_data,fit_range=[1E15, 1E20],size=100,quantiles=[0.05,0.95])
p.setlim(y_min=1E-14,x_min=1E6,x_max=2E20)
.. image:: Jet_example_only_synchrotron_files/Jet_example_only_synchrotron_55_0.png
.. code:: ipython3
f=ms.plot_par('beam_obj',log_plot=False)
.. image:: Jet_example_only_synchrotron_files/Jet_example_only_synchrotron_56_0.png
.. code:: ipython3
f=ms.plot_par('B',log_plot=True)
.. image:: Jet_example_only_synchrotron_files/Jet_example_only_synchrotron_57_0.png
.. code:: ipython3
f=mcmc.plot_chain(log_plot=False)
.. image:: Jet_example_only_synchrotron_files/Jet_example_only_synchrotron_58_0.png
.. code:: ipython3
f=mcmc.corner_plot()
.. image:: Jet_example_only_synchrotron_files/Jet_example_only_synchrotron_59_0.png